

Course Outline

Department of Computing Science
Faculty of Science

COMP 3520 – 3

Software engineering (3,1,0)
Fall, 2017

Instructor: Phone/Voice Mail: E-Mail:

Calendar /Course Description

Students are introduced to the different software process models and management of modular
inter-communication, software engineering tools, software testing and project management
including resource estimation, team organization and review. Students learn software
engineering techniques for dependable and secure systems, reliability engineering, software
evolution, software maintenance, quality management, configuration management, reuse and
ethical issues in software engineering.

Course/Learning Outcomes

Upon successful completion of the course, the student will demonstrate the ability to:

1. Explain the different practices that are key components of various process models.
2. Apply the basic principles of software project management in a team environment.
3. Understand a variety of strategies to the testing of simple programs.
4. Identify the principal issues associated with software evolution and explain their impact

on the software lifecycle.
5. Identify methods that will lead to the creation of a software architecture that achieves a

specified level of reliability, dependability and security.
6. Demonstrate the understanding of ethical issues in software development

Prerequisites

COMP 2920 Software Architecture and Design

Recommended Texts/Materials

Text Book: Sommerville Ian, Software Engineering, 10th Edition, Addison Wesley; ISBN-10:
0133943038

Syllabus

Topic # Chapter Title Chapter #

1 Software processes 2

2 Agile software development 3

3 Software Testing 8

4 Software Evolution 9

5 Dependability and security 10

6 Security Engineering 13

7 Resilience engineering 14

8 Software Reuse 15

9 Project management 22

10 Project planning 23

11 Quality Management 24

12 Configuration management 25

13 Computer Reliability and Ethical Issues Instructor notes

14 Professional Ethics and The ACM Code SE
code

Instructor notes

ACM / IEEE Knowledge Area Coverage

IEEE Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

SE/Software Processes 3

SE/Software Project Management 2

SE/Tools and Environments 1

SE/Software Verification and Validation 4

SE/Software Evolution 2

SE/Software Reliability 2

SF/Reliability through Redundancy 2

SDF/Development Methods 2

SP/Professional Ethics 4

SP/Analytical Tools 3

IEEE Body of Knowledge coverage

KA Knowledge Unit Topics Covered T1
hour

T2
hour

Elective
hours

SE SE/Software
Processes

Systems level considerations, i.e., the
interaction of software with its intended
environment (cross reference
IAS/Secure Software Engineering)
• Introduction to software process
models (e.g., waterfall, incremental,
agile)
o Activities within software lifecycles

• Programming in the large vs.
individual programming

Evaluation of software process models

2 1 0

SE SE/Software Project
Management

• Team participation
o Team processes including
responsibilities for tasks, meeting
structure, and work schedule
o Roles and responsibilities in a
software team
o Team conflict resolution
o Risks associated with virtual teams
(communication, perception, structure)
• Effort Estimation (at the personal
level)
• Risk (cross reference IAS/Secure
Software Engineering)
o The role of risk in the lifecycle
o Risk categories including security,
safety, market, financial, technology,
people, quality, structure

and process

0 2 0

SE SE/Software  Verification and validation concepts 0 4 0

Verification and
Validation

 Inspections, reviews, audits

 Testing types, including human
computer interface, usability,
reliability, security, conformance to

 specification (cross-reference
IAS/Secure Software Engineering)

 Testing fundamentals (cross-
reference SDF/Development
Methods)

 Unit, integration, validation, and
system testing

 Test plan creation and test case
generation

 Black-box and white-box testing
techniques

 Regression testing and test
automation

 Defect tracking

 Limitations of testing in particular
domains, such as parallel or safety-
critical systems

SE SE/Software
Evolution

 Software development in the context
of large, pre-existing code bases

 Software change

 Concerns and concern location

 Refactoring

 Software evolution

 Characteristics of maintainable
software

 Reengineering systems

 Software reuse

 Code segments

 Libraries and frameworks

 Components

 Product lines

 2

SE SE/Software
Reliability

 Software reliability engineering
concepts

 Software reliability, system reliability
and failure behavior (cross-
reference SF/Reliability Through
Redundancy)

 Fault lifecycle concepts and
techniques

 Software reliability models

 Software fault tolerance techniques
and models

 Software reliability engineering
practices

 1

 Measurement-based analysis of
software reliability

SF SF/Reliability
through Redundancy

 Distinction between bugs and faults

 Redundancy through check and
retry

 Duplication/mirroring/replicas

 Other approaches to fault tolerance
and availability

 2

SDF SDF/Development
Methods

 Program comprehension

 Program correctness

 Types of errors (syntax, logic, run-
time)

 The concept of a specification

 Defensive programming (e.g. secure
coding, exception handling)

 Code reviews

 Testing fundamentals and test-case
generation

 The role and the use of contracts,
including pre- and post-conditions

 Unit testing

 Simple refactoring

2

SP SP/Professional
Ethics

 Community values and the laws
by which we live

 The nature of professionalism
including care, attention and
discipline, fiduciary
responsibility, and mentoring

 Keeping up-to-date as a
computing professional in terms
of familiarity, tools, skills, legal
and professional framework as
well as the ability to self-assess
and progress in the computing
field

 Professional certification, codes
of ethics, conduct, and practice,
such as the ACM/IEEE-CS, SE,
AITP

 Accountability, responsibility and
liability (e.g. software
correctness, reliability and
safety, as well as ethical
confidentiality of cybersecurity
professionals)

2 2

 Forms of professional
credentialing

 Acceptable use policies for
computing in the workplace

SP SP/Analytical Tools  Ethical argumentation

 Ethical theories and decision-
making

 Moral assumptions and values

1 2

